Spatial Durbin Mixture Models

Gary Cornwall

1Department of Economics
University of Cincinnati

March 27, 2017
Outline

1 Motivations and Contributions
2 Spatial Durbin Mixture Model Specifications
3 Interpretation of the SDM-M
4 An Empirical Application
5 Conclusions and Additional Research
6 Appendix
Homogeneous models are often used to evaluate heterogeneous behavioral responses.
Motivations and Contributions

Motivation

- Homogeneous models are often used to evaluate heterogeneous behavioral responses.
- Bramoullé, Kranton & D’Amours. (2014): Establishes a theoretical foundation which challenges empirical work to estimate multiple equilibria for networking models.
Motivation

- Homogeneous models are often used to evaluate heterogeneous behavioral responses.

- Bramoullé, Kranton & D’Amours. (2014): Establishes a theoretical foundation which challenges empirical work to estimate multiple equilibria for networking models.

Motivations and Contributions

Contribution

- Extend the finite mixture model structure into the Spatial Durbin class of models.
Motivations and Contributions

Contribution

- Extend the finite mixture model structure into the Spatial Durbin class of models.
 - Allows for estimation in the presence of both dependence and heterogeneity.
Motivations and Contributions

Contribution

- Extend the finite mixture model structure into the Spatial Durbin class of models.
 - Allows for estimation in the presence of both dependence and heterogeneity.
 - Spatial Durbin Mixture Model (SDM-M) & Spatial Durbin Error Mixture Model (SDEM-M)
Motivations and Contributions

Contribution

- Extend the finite mixture model structure into the Spatial Durbin class of models.
 - Allows for estimation in the presence of both dependence and heterogeneity.
 - Spatial Durbin Mixture Model (SDM-M) & Spatial Durbin Error Mixture Model (SDEM-M)
 - Nest both the standard SDM (G=1) and the HSDM (G=N) specification as special cases.
Motivations and Contributions

Contribution

- Extend the finite mixture model structure into the Spatial Durbin class of models.
 - Allows for estimation in the presence of both dependence and heterogeneity.
 - Spatial Durbin Mixture Model (SDM-M) & Spatial Durbin Error Mixture Model (SDEM-M)
 - Nests both the standard SDM (G=1) and the HSDM (G=N) specification as special cases.

- Own-partial and cross partial derivatives have a much richer interpretation and are differentiated not only by group but also relative location.
Motivations and Contributions

Contribution

- Extend the finite mixture model structure into the Spatial Durbin class of models.
 - Allows for estimation in the presence of both dependence and heterogeneity.
 - Spatial Durbin Mixture Model (SDM-M) & Spatial Durbin Error Mixture Model (SDEM-M)
 - Nests both the standard SDM (G=1) and the HSDM (G=N) specification as special cases.

- Own-partial and cross partial derivatives have a much richer interpretation and are differentiated not only by group but also relative location.

- Conditional group assignment allows for interpretation of unobserved intra- and inter-group dynamics.
Mean varies across **clusters**.

- A form of fixed effects can be implemented by allowing intercept to vary.
- Approach requires delineation of data into smaller clusters which may or may not be feasible.

Figure: Spatial Heterogeneity
Spatial Heterogeneity

- Mean may or may not vary across groups \((g = 1, 2, \ldots, G)\)
- Fixed effects may be spurious.
- SAR model overstates spatial dependency.
- Delineation into small clusters is nearly impossible with any sort of accuracy.

Figure: Spatial Dependence/Mixture
Spatial Durbin Models

Spatial Durbin Model

\[Y = \rho W Y + X \beta + WX \Phi + \epsilon \] \hspace{1cm} (1)

\(W \) is an \(N \times N \) right-stochastic matrix which represents the connectivity structure for the sample. \(\rho \) is typically positive in homogeneous models but can be negative. Most other spatial specifications are nested within the structure of the SDM.
Spatial Durbin Model

\[Y = \rho Wy + X\beta + WX\Phi + \epsilon \] \hspace{1cm} (1)

- \(W \) is an \(N \times N \) right-stochastic matrix which represents the connectivity structure for the sample.
Spatial Durbin Models

Spatial Durbin Model

\[Y = \rho W y + X \beta + W \Phi + \epsilon \]

- \(W \) is an \(N \times N \) right-stochastic matrix which represents the connectivity structure for the sample.
- \(\rho \) is typically positive in homogeneous models but can be negative.
Spatial Durbin Models

Spatial Durbin Model

\[Y = \rho W y + X \beta + W X \Phi + \epsilon \] \hspace{1cm} (1)

- \(W \) is an \(N \times N \) right-stochastic matrix which represents the connectivity structure for the sample.
- \(\rho \) is typically positive in homogeneous models but can be negative.
- Most other spatial specifications are nested within the structure of the SDM.
Finite Mixture Models

G-component Mixture Model

- A mixture of Gaussian distributions can approximate most other distribution forms.
Finite Mixture Models

G-component Mixture Model

- A mixture of Gaussian distributions can approximate most other distribution forms.
- Generally can be written as:

\[
p(y_i | x_i, \beta, \Sigma, z, \pi) = \sum_{g=1}^{G} \pi_g N(y_i | \beta_g, \sigma^2_g), \quad \sum_{g=1}^{G} \pi_g = 1
\] \hspace{1cm} (2)

\[
y_i = \sum_{g=1}^{G} z_{ig} \alpha_g + \sum_{k=1}^{K} \sum_{g=1}^{G} z_{ig} x_i^k \beta_g^k + \sum_{g=1}^{G} \Omega_{gg} z_{ig} \epsilon_i, \quad i = 1, 2, \ldots, N
\] \hspace{1cm} (3)
Spatial Durbin Mixture Model Specifications

Spatial Durbin Mixture Model: SDM-M

\[y_i = \sum_{g=1}^{G} z_i g \alpha_g + \sum_{g=1}^{G} z_i g \rho_g \sum_{j=1}^{N} W_{ij} y_j + \sum_{k=1}^{K} \sum_{g=1}^{G} z_i g x_i^k \beta_g^k + \sum_{k=1}^{K} \sum_{g=1}^{G} \sum_{j=1}^{N} W_{ij} z_i g x_j^k \phi_g^k + \sum_{g=1}^{G} \Omega_{gg} z_i g \epsilon_i \]

(4)

Matrix Notation:

\[y = \tilde{\alpha} + \tilde{\Psi} W y + \tilde{X} B + W \tilde{X} \Phi + \tilde{\epsilon} \]

(5)

Definitions:

\[\tilde{\alpha} = z \alpha \]

\[\tilde{X} = (\iota'_G \otimes X) \odot (z \otimes \iota'_K) \]

\[\tilde{\Psi} = z \psi, \psi = (\rho_1, \ldots, \rho_g) \]

\[\tilde{\epsilon} = (z \Omega^{1/2}) \odot \epsilon \]
Spatial Durbin Error Mixture Model: SDEM-M

\[y_i = \sum_{g=1}^{G} z_{ig} \alpha_g + \sum_{k=1}^{K} \sum_{g=1}^{G} z_{ig} x_{ik} \beta_{kg} + \sum_{k=1}^{K} \sum_{g=1}^{G} \sum_{j=1}^{N} W_{ij} z_{ig} x_{jk} \phi_{kg} + \eta_i \] \hspace{1cm} (6)

\[\eta_i = \sum_{g=1}^{G} z_{ig} \lambda_g \sum_{j=1}^{N} W_{ij} \eta_j + \sum_{g=1}^{G} z_{ig} \epsilon_i \]

Matrix notation:

\[y = \tilde{\alpha} + \tilde{X}B + W\tilde{X}\Phi + (I - \tilde{\Psi}W)^{-1}\tilde{\epsilon} \] \hspace{1cm} (7)
The Parameters of Interest

- B, Φ - Each are $KG \times 1$ vectors of coefficients.
- Ω - $G \times 1$ vector of variances.
- ψ - $G \times 1$ vector of scalars indicating strength of spatial dependence.
- ω, z - An $N \times G$ matrix indicating which group each region is in.
- π - A $G \times 1$ vector of group weights over the sample.
Sampling Algorithm

- Set initial values for parameters.
- Expand X to \tilde{X}.
- Draw from $p(\tilde{B} | \Omega, \psi, z, \pi, x, y) \sim N(D_{\tilde{B}}d_{\tilde{B}}, D_{\tilde{B}})$
- Draw from $p(\Omega | \tilde{B}, \psi, z, \pi, z, y) \sim IG(c, C)$
- Draw from (M-H Step) $p(\rho_g | \rho_{-g}, \Omega, \tilde{B}, z, \pi, x, y) \propto |I_N - \tilde{\Psi}| \exp\left[-\frac{1}{2}e'\Omega^{-1}e\right]$
- Draw from $p(z_i | \Omega, \tilde{B}, \psi, x, y) \sim MN(1, [\omega_{i1}, \ldots, \omega_{iG}])$
- Draw from $p(\pi | \Omega, \tilde{B}, \psi, z, x, y) \sim D(\alpha + N)$
- Iterate
Partial Derivatives for the SDM-M

For reference the partial derivatives of the SDM are:

$$\frac{\delta y}{\delta x^k} = (I - \rho W)^{-1}(I \beta^k + W \phi^k)$$

(8)

- The partial derivative is, by definition, an $N \times N$ matrix.
Partial Derivatives for the SDM-M

For reference the partial derivatives of the SDM are:

$$\frac{\delta y}{\delta x^k} = (I - \rho W)^{-1}(I\beta^k + W\phi^k)$$

- The partial derivative is, by definition, an $N \times N$ matrix.
- This matrix is summarized by total, direct, and indirect effects. (Lesage & Pace, 2009)
Partial Derivatives for the SDM-M

For reference the partial derivatives of the SDM are:

\[
\frac{\delta y}{\delta x^k} = (I - \rho W)^{-1}(I \beta^k + W \phi^k)
\]

- The partial derivative is, by definition, an \(N \times N\) matrix.
- This matrix is summarized by total, direct, and indirect effects. (Lesage & Pace, 2009)
- Let \(S_k(W) = (I - \rho W)^{-1}(I \beta^k + W \phi^k)\)
Partial Derivatives for the SDM-M

For reference the partial derivatives of the SDM are:

\[
\frac{\delta y}{\delta x^k} = (I - \rho W)^{-1}(I\beta^k + W\phi^k)
\]

(8)

- The partial derivative is, by definition, an $N \times N$ matrix.
- This matrix is summarized by total, direct, and indirect effects. (Lesage & Pace, 2009)
- Let $S_k(W) = (I - \rho W)^{-1}(I\beta^k + W\phi^k)$
- Total Effects:
Partial Derivatives for the SDM-M

For reference the partial derivatives of the SDM are:

$$\frac{\delta y}{\delta x^k} = (I - \rho W)^{-1}(I\beta^k + W\phi^k)$$

(8)

- The partial derivative is, by definition, an $N \times N$ matrix.
- This matrix is summarized by total, direct, and indirect effects. (Lesage & Pace, 2009)
- Let $S_k(W) = (I - \rho W)^{-1}(I\beta^k + W\phi^k)$

Total Effects:
- Total impact to an observation given by averaging column sum vector $c_k = S_k(W)\iota_n$, or $n^{-1}\iota_n'c_k$.
Partial Derivatives for the SDM-M

For reference the partial derivatives of the SDM are:

\[
\frac{\delta y}{\delta x^k} = (I - \rho W)^{-1}(I \beta^k + W \phi^k)
\]

(8)

- The partial derivative is, by definition, an \(N \times N\) matrix.
- This matrix is summarized by total, direct, and indirect effects. (Lesage & Pace, 2009)
- Let \(S_k(W) = (I - \rho W)^{-1}(I \beta^k + W \phi^k)\)

Total Effects:
- Total impact to an observation given by averaging column sum vector \(c_k = S_k(W)\tau_n\), or \(n^{-1}\tau'_n c_k\).
- Total impact from an observation given by averaging row sum vector \(r_k = \tau'_n S_k(W)\), or \(n^{-1}r_k\tau_n\).
Partial Derivatives for the SDM-M

For reference the partial derivatives of the SDM are:

\[\frac{\delta y}{\delta x^k} = (I - \rho W)^{-1}(I\beta^k + W\phi^k) \] (8)

- The partial derivative is, by definition, an \(N \times N \) matrix.
- This matrix is summarized by **total**, **direct**, and **indirect** effects. (Lesage & Pace, 2009)
- Let \(S_k(W) = (I - \rho W)^{-1}(I\beta^k + W\phi^k) \)

Total Effects:
- Total impact to an observation given by averaging column sum vector \(c_k = S_k(W)\iota_n \), or \(n^{-1}\iota_n'c_k \).
- Total impact from an observation given by averaging row sum vector \(r_k = \iota_n'S_k(W) \), or \(n^{-1}r_k\iota_n \).

Direct Effects: \(n^{-1}tr(S_k(W)) \)
Interpretation of the SDM-M

Partial Derivatives for the SDM-M

For reference the partial derivatives of the SDM are:

$$\frac{\delta y}{\delta x^k} = (I - \rho W)^{-1}(I \beta^k + W \phi^k)$$ \hspace{1cm} (8)

- The partial derivative is, by definition, an $N \times N$ matrix.
- This matrix is summarized by total, direct, and indirect effects. (Lesage & Pace, 2009)
- Let $S_k(W) = (I - \rho W)^{-1}(I \beta^k + W \phi^k)$
- **Total Effects:**
 - Total impact to an observation given by averaging column sum vector $c_k = S_k(W) \iota_n$, or $n^{-1} \iota_n' c_k$.
 - Total impact from an observation given by averaging row sum vector $r_k = \iota_n' S_k(W)$, or $n^{-1} r_k \iota_n$.
- **Direct Effects:** $n^{-1} tr(S_k(W))$
- **Indirect Effects:** Total - Direct

Gary Cornwall (University of Cincinnati)
SRSA Conference 2017
March 27, 2017
The "To" and "From" Now Matters

The partial derivative for the SDM-M:

$$\frac{\delta y}{\delta x^k} = (I - \tilde{\Psi} W)^{-1}\left(\text{diag}(z_{\beta_g}^k) + \text{diag}(z_{\phi_g}^k) W\right)$$

(9)

- The partial derivative is still an $N \times N$ matrix.
- Let $M_k(W) = (I - \tilde{\Psi} W)^{-1}\left(\text{diag}(z_{\beta_g}^k) + \text{diag}(z_{\phi_g}^k) W\right)$.
- Now $n^{-1}l'_n c_r \neq n^{-1}r_r l_n$.
Relative Location
Defining Interior and Border

Interior (Λ)

\[i \in \lambda_g \iff j \in g \ \forall \ w_{ij} > 0 \] (10)

Border (Γ)

\[i \in \gamma_g \ \exists \ j \notin g \ \forall \ w_{ij} > 0 \] (11)

\[\sum_{g=1}^G \lambda_g = \Lambda, \sum_{g=1}^G \gamma_g = \Gamma, \ \Lambda \cup \Gamma = N \]
Depth of Neighbors

- Since we are interested in differentiating effects for interior and border regions the "depth" of the weight matrix matters.
Since we are interested in differentiating effects for interior and border regions the "depth" of the weight matrix matters.

The more regions included as first order neighbors the more isolated a region must be to be considered interior.
Since we are interested in differentiating effects for interior and border regions the "depth" of the weight matrix matters.

The more regions included as first order neighbors the more isolated a region must be to be considered interior.

This means that some groups may consist entirely of border agents while others are a mix.
Interpretation of the SDM-M

Interior and Border Effects Realized

As a reminder $M_r(W) = (I - \tilde{\Psi} W)^{-1} \left(\text{diag}(z_{\beta g}^k) + \text{diag}(z_{\phi g}^k) W \right)$.

Group Interior Effects:

\[DE^\lambda_g = (n_g^\lambda)^{-1} \sum_{i=1}^{n_g^\lambda} m_{ii} \] \hspace{1cm} (12)

\[SI^\lambda_g = (n_g^\lambda)^{-1} \sum_{i=1}^{n_g^\lambda} \sum_{j=1, j \neq i}^{n_g^\lambda} m_{ij} \] \hspace{1cm} (13)

\[SO^\lambda_g = (n_g^\lambda)^{-1} \sum_{i=1}^{n_g^\lambda} \sum_{i=1, i \neq j}^{n_g^\lambda} m_{ij} \] \hspace{1cm} (14)

Group Border Effects:

\[DE^\gamma_g = (n_g^\gamma)^{-1} \sum_{i=1}^{n_g^\gamma} m_{ii} \] \hspace{1cm} (15)

\[SI^\gamma_g = (n_g^\gamma)^{-1} \sum_{i=1}^{n_g^\gamma} \sum_{j=1, j \neq i}^{n_g^\gamma} m_{ij} \] \hspace{1cm} (16)

\[SO^\gamma_g = (n_g^\gamma)^{-1} \sum_{i=1}^{n_g^\gamma} \sum_{i=1, i \neq j}^{n_g^\gamma} m_{ij} \] \hspace{1cm} (17)
Interpretation of the SDM-M

A Simple Example

- 8 Regions
- 2 Groups
- Contiguity Weight Matrix - Queen

Group 1:
- A, B, C, D
- $\rho_1 = -0.2$
- $\beta_1 = 1$, $\phi_1 = 0$

Group 2:
- E, F, G, H
- $\rho_2 = 0.5$
- $\beta_2 = 1$, $\phi_2 = 0$
The SDM-M reports group level border and interior effects.

- Provides more information than SDM.
- What happens if we vary ρ_2 over the domain while holding ρ_1 constant?
Interpretation of the SDM-M

Why interior and border? A visual justification...

Figure: Group 1 Responses

Gary Cornwall (University of Cincinnati)
Heterogeneity in Income

- Drawing from existing literature (Gu & Koenker, 2015).
An Empirical Application

Heterogeneity in Income

- Drawing from existing literature (Gu & Koenker, 2015).
- Utilizing the Panel Study of Income Dynamics (PSID).

Model:
\[
\log(\text{income}) = \tilde{\Psi} W \log(\text{income}) + X \beta + \Phi W X + \epsilon
\]

- \(X\) includes age, education, gender, race, marital status and home ownership.
- Block-diagonal (State) nearest-neighbor (5) weight matrix.
Heterogeneity in Income

- Drawing from existing literature (Gu & Koenker, 2015).
- Utilizing the Panel Study of Income Dynamics (PSID).
 - Restricted Data Set - Location based on 2010 census blocks.
Heterogeneity in Income

- Drawing from existing literature (Gu & Koenker, 2015).
- Utilizing the Panel Study of Income Dynamics (PSID).
 - Restricted Data Set - Location based on 2010 census blocks.
 - 2011 Family Wave Data - Split into individuals
Heterogeneity in Income

- Drawing from existing literature (Gu & Koenker, 2015).
- Utilizing the Panel Study of Income Dynamics (PSID).
 - Restricted Data Set - Location based on 2010 census blocks.
 - 2011 Family Wave Data - Split into individuals
 - N = 12,443

Model:
\[
\log(\text{income}) = \tilde{\Psi} W \log(\text{income}) + X \beta + WX \Phi + \epsilon
\]

X includes age, education, gender, race, marital status and home ownership.

Block-diagonal (State) nearest-neighbor (5) weight matrix.
Heterogeneity in Income

- Drawing from existing literature (Gu & Koenker, 2015).

- Utilizing the Panel Study of Income Dynamics (PSID).
 - Restricted Data Set - Location based on 2010 census blocks.
 - 2011 Family Wave Data - Split into individuals
 - N = 12,443

- Model: $\log(\text{income}) = \tilde{\Psi} W \log(\text{income}) + XB + WX\Phi + \epsilon$
 - X includes age, education, gender, race, marital status and home ownership.
 - Block-diagonal (State) nearest-neighbor (5) weight matrix.
Heterogeneity in Income

- Drawing from existing literature (Gu & Koenker, 2015).

- Utilizing the Panel Study of Income Dynamics (PSID).
 - Restricted Data Set - Location based on 2010 census blocks.
 - 2011 Family Wave Data - Split into individuals
 - N = 12,443

- Model: $\log(\text{income}) = \tilde{\Psi}W\log(\text{income}) + XB + WX\Phi + \epsilon$
 - X includes age, education, gender, race, marital status and home ownership.
Heterogeneity in Income

- Drawing from existing literature (Gu & Koenker, 2015).
- Utilizing the Panel Study of Income Dynamics (PSID).
 - Restricted Data Set - Location based on 2010 census blocks.
 - 2011 Family Wave Data - Split into individuals
 - $N = 12,443$

Model:

$$\log(\text{income}) = \Psi W \log(\text{income}) + XB + WX\Phi + \epsilon$$

- X includes age, education, gender, race, marital status and home ownership.
- Block-diagonal (State) nearest-neighbor (5) weight matrix.
Results Summary

- Three distinct groups emerge from the data.
 - Group 1 - Fully-employed
 - Group 2 - Un-employed
 - Group 3 - Under-employed

- Spill-out effects from education tend to be positive even if the direct effects are not.
- Spill-in effects from education tend to be negative for both those that are un-employed and under-employed.
- Household dynamics become apparent by a *post hoc* analysis of the data under the estimated groupings.
- Estimates are robust to changes in the weight matrix.
 - Nearest Neighbor - 2 through 6.
 - Contiguity - Queen.
An Empirical Application

Parameter Estimates

- All hypothesis are examined under 95% HPD.
- Many of the spatially lagged characteristics have significant estimates (Φ).
- Three Groups
 - Group One (*Fully-Employed*) - 80.4%
 - Group Two (*Unemployed*) - 14.3%
 - Group Three (*Under-Employed*) - 5.3%
Posteriors for Ψ

- Odds against (Mills, WP)
 $\rho_1 = 0 \approx 346,000 : 1$
- Odds against (Mills, WP)
 $\rho_2 = 0 \approx 1.19 : 1$
- Odds against (Mills, WP)
 $\rho_3 = 0 \approx 21.5 : 1$
Select Results: Education

- Obtaining additional human capital has large and positive impacts on income (Psacharopoulos, 1994; Montenegro & Patrinos, 2013; etc.)

- Agents in group 2 experience a negative spill-in when their neighbors acquire additional human capital.

- Agents in group 3 experience downward pressure on wages as a result of obtaining additional human capital.

<table>
<thead>
<tr>
<th>Group</th>
<th>Interior Direct</th>
<th>Estimate</th>
<th>Std. Dev.</th>
<th>Lower 95</th>
<th>Upper 95</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td></td>
<td>0.0716**</td>
<td>0.0026</td>
<td>0.0666</td>
<td>0.0766</td>
</tr>
<tr>
<td></td>
<td>Interior Spill-in</td>
<td>0.1307**</td>
<td>0.0048</td>
<td>0.1213</td>
<td>0.1397</td>
</tr>
<tr>
<td></td>
<td>Interior Spill-out</td>
<td>0.1225**</td>
<td>0.0046</td>
<td>0.1133</td>
<td>0.1311</td>
</tr>
<tr>
<td></td>
<td>Border Direct</td>
<td>0.1356**</td>
<td>0.0042</td>
<td>0.1272</td>
<td>0.1437</td>
</tr>
<tr>
<td></td>
<td>Border Spill-in</td>
<td>0.2474**</td>
<td>0.0062</td>
<td>0.2348</td>
<td>0.2596</td>
</tr>
<tr>
<td></td>
<td>Border Spill-out</td>
<td>0.1742**</td>
<td>0.0074</td>
<td>0.1598</td>
<td>0.1881</td>
</tr>
<tr>
<td>Two</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interior Direct</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Interior Spill-in</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Interior Spill-out</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Border Direct</td>
<td>-0.0254</td>
<td>0.0167</td>
<td>-0.0595</td>
<td>0.0066</td>
</tr>
<tr>
<td></td>
<td>Border Spill-in</td>
<td>-0.2149**</td>
<td>0.0233</td>
<td>-0.2616</td>
<td>-0.1723</td>
</tr>
<tr>
<td></td>
<td>Border Spill-out</td>
<td>0.2876**</td>
<td>0.0078</td>
<td>0.2727</td>
<td>0.3031</td>
</tr>
<tr>
<td>Three</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interior Direct</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Interior Spill-in</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Interior Spill-out</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Border Direct</td>
<td>-0.0957**</td>
<td>0.0495</td>
<td>-0.1920</td>
<td>-0.0008</td>
</tr>
<tr>
<td></td>
<td>Border Spill-in</td>
<td>0.4219**</td>
<td>0.0875</td>
<td>0.2423</td>
<td>0.5918</td>
</tr>
<tr>
<td></td>
<td>Border Spill-out</td>
<td>0.3022**</td>
<td>0.0101</td>
<td>0.2830</td>
<td>0.3217</td>
</tr>
</tbody>
</table>
A Quick Summary

- The spatial mixture class of models fills a gap between traditional spatial models (see LeSage & Pace 2009) and more recent developments in heterogeneous models (see Aquaro, et al., 2015 and LeSage & Chih, 2016).
A Quick Summary

- The spatial mixture class of models fills a gap between traditional spatial models (see LeSage & Pace 2009) and more recent developments in heterogeneous models (see Aquaro, et al., 2015 and LeSage & Chih, 2016).
- The SDM-M and SDEM-M nest many other functional forms as special cases.
The spatial mixture class of models fills a gap between traditional spatial models (see LeSage & Pace 2009) and more recent developments in heterogeneous models (see Aquaro, et al., 2015 and LeSage & Chih, 2016).

The SDM-M and SDEM-M nest many other functional forms as special cases.

The focus on group and locational dynamics gives avenues for model exploration that previously were not available.
Thank you!
Appendix

Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>L-95 HPD</td>
<td>U-95 HPD</td>
</tr>
<tr>
<td>β_{Age}</td>
<td>0.0009</td>
<td>-0.0006</td>
<td>0.0024</td>
</tr>
<tr>
<td>$\beta_{\text{Education}}$</td>
<td>0.2072**</td>
<td>0.1979</td>
<td>0.2167</td>
</tr>
<tr>
<td>β_{Gender}</td>
<td>0.4993**</td>
<td>0.4541</td>
<td>0.5453</td>
</tr>
<tr>
<td>β_{Race}</td>
<td>0.0295</td>
<td>0.0253</td>
<td>0.0852</td>
</tr>
<tr>
<td>$\beta_{\text{MaritalStatus}}$</td>
<td>0.2016**</td>
<td>0.1496</td>
<td>0.2547</td>
</tr>
<tr>
<td>$\beta_{\text{HomeOwnership}}$</td>
<td>0.3312**</td>
<td>0.2763</td>
<td>0.3874</td>
</tr>
<tr>
<td>ϕ_{Age}</td>
<td>0.0406**</td>
<td>0.0378</td>
<td>0.0435</td>
</tr>
<tr>
<td>$\phi_{\text{Education}}$</td>
<td>0.3542**</td>
<td>0.3409</td>
<td>0.3671</td>
</tr>
<tr>
<td>ϕ_{Gender}</td>
<td>0.2834**</td>
<td>0.1735</td>
<td>0.3940</td>
</tr>
<tr>
<td>ϕ_{Race}</td>
<td>-0.4437**</td>
<td>-0.5279</td>
<td>-0.3621</td>
</tr>
<tr>
<td>$\phi_{\text{MaritalStatus}}$</td>
<td>0.6616**</td>
<td>0.5490</td>
<td>0.7747</td>
</tr>
<tr>
<td>$\phi_{\text{HomeOwnership}}$</td>
<td>-0.6111**</td>
<td>-0.7232</td>
<td>-0.5027</td>
</tr>
<tr>
<td>ρ</td>
<td>0.0219**</td>
<td>0.0123</td>
<td>0.0309</td>
</tr>
<tr>
<td>σ^2</td>
<td>1.0631</td>
<td>0.9788</td>
<td>1.1628</td>
</tr>
<tr>
<td>π</td>
<td>0.8040</td>
<td>0.7925</td>
<td>0.8148</td>
</tr>
<tr>
<td>Nobs</td>
<td>9995</td>
<td>1782</td>
<td>666</td>
</tr>
</tbody>
</table>
Partial Effects Summaries

<table>
<thead>
<tr>
<th></th>
<th>Group 1 - Fully Employed</th>
<th></th>
<th>Group 2 - Unemployed</th>
<th></th>
<th>Group 3 - Under Employed</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>std</td>
<td>l95</td>
<td>u95</td>
<td>Estimate</td>
<td>std</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interior Direct</td>
<td>0.0004</td>
<td>0.0002</td>
<td>0.0008</td>
<td>-0.0001</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Interior Spill-in</td>
<td>0.0225**</td>
<td>0.0018</td>
<td>0.0193</td>
<td>0.0264</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Interior Spill-out</td>
<td>0.0220**</td>
<td>0.0017</td>
<td>0.0187</td>
<td>0.0257</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Border Direct</td>
<td>0.0007</td>
<td>0.0004</td>
<td>-0.0003</td>
<td>0.0016</td>
<td>-0.0054</td>
<td>0.0029</td>
</tr>
<tr>
<td>Border Spill-in</td>
<td>0.0426**</td>
<td>0.0032</td>
<td>0.0368</td>
<td>0.0492</td>
<td>-0.0343**</td>
<td>0.0122</td>
</tr>
<tr>
<td>Border Spill-out</td>
<td>0.0372**</td>
<td>0.0050</td>
<td>0.0279</td>
<td>0.0480</td>
<td>0.0571**</td>
<td>0.0059</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interior Direct</td>
<td>0.0716**</td>
<td>0.0026</td>
<td>0.0666</td>
<td>0.0766</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Interior Spill-in</td>
<td>0.1307**</td>
<td>0.0048</td>
<td>0.1213</td>
<td>0.1397</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Interior Spill-out</td>
<td>0.1225**</td>
<td>0.0046</td>
<td>0.1133</td>
<td>0.1311</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Border Direct</td>
<td>0.1356**</td>
<td>0.0042</td>
<td>0.1272</td>
<td>0.1437</td>
<td>-0.0254</td>
<td>0.0167</td>
</tr>
<tr>
<td>Border Spill-in</td>
<td>0.2474**</td>
<td>0.0062</td>
<td>0.2348</td>
<td>0.2596</td>
<td>-0.2149**</td>
<td>0.0233</td>
</tr>
<tr>
<td>Border Spill-out</td>
<td>0.1742**</td>
<td>0.0074</td>
<td>0.1598</td>
<td>0.1881</td>
<td>0.2876**</td>
<td>0.0078</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interior Direct</td>
<td>0.1729**</td>
<td>0.0101</td>
<td>0.1531</td>
<td>0.1924</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Interior Spill-in</td>
<td>0.1060**</td>
<td>0.0195</td>
<td>0.0684</td>
<td>0.1453</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Interior Spill-out</td>
<td>0.0987**</td>
<td>0.0185</td>
<td>0.0637</td>
<td>0.1365</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Border Direct</td>
<td>0.3272**</td>
<td>0.0161</td>
<td>0.2963</td>
<td>0.3593</td>
<td>0.0674</td>
<td>0.0899</td>
</tr>
<tr>
<td>Border Spill-in</td>
<td>0.2005**</td>
<td>0.0366</td>
<td>0.1313</td>
<td>0.2742</td>
<td>-0.2339</td>
<td>0.1826</td>
</tr>
<tr>
<td>Border Spill-out</td>
<td>0.1360**</td>
<td>0.0445</td>
<td>0.0506</td>
<td>0.2246</td>
<td>0.2264**</td>
<td>0.0582</td>
</tr>
</tbody>
</table>
Partial Effects Summaries: Continued

<table>
<thead>
<tr>
<th></th>
<th>Group 1 - Fully Employed</th>
<th></th>
<th></th>
<th>Group 2 - Unemployed</th>
<th></th>
<th></th>
<th>Group 3 - Under Employed</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>std</td>
<td>l95</td>
<td>u95</td>
<td>Estimate</td>
<td>std</td>
<td>l95</td>
<td>u95</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interior Direct</td>
<td>0.0105</td>
<td>0.0095</td>
<td>-0.0071</td>
<td>0.0300</td>
<td>0.0000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Interior Spill-in</td>
<td>-0.1456**</td>
<td>0.0152</td>
<td>-0.1757</td>
<td>-0.1162</td>
<td>0.0000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Interior Spill-out</td>
<td>-0.1361**</td>
<td>0.0145</td>
<td>-0.1643</td>
<td>-0.1081</td>
<td>0.0000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Border Direct</td>
<td>0.0198</td>
<td>0.0180</td>
<td>-0.0134</td>
<td>0.0572</td>
<td>0.0859</td>
<td>0.0938</td>
<td>-0.0694</td>
<td>0.2795</td>
</tr>
<tr>
<td>Border Spill-in</td>
<td>-0.2755**</td>
<td>0.0276</td>
<td>-0.3322</td>
<td>-0.2220</td>
<td>0.2504</td>
<td>0.1436</td>
<td>-0.0231</td>
<td>0.5353</td>
</tr>
<tr>
<td>Border Spill-out</td>
<td>-0.1940**</td>
<td>0.0348</td>
<td>-0.2645</td>
<td>-0.1250</td>
<td>-0.3199**</td>
<td>0.0447</td>
<td>-0.4076</td>
<td>-0.2322</td>
</tr>
<tr>
<td>Marital Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interior Direct</td>
<td>0.0704**</td>
<td>0.0098</td>
<td>0.0525</td>
<td>0.0900</td>
<td>0.0000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Interior Spill-in</td>
<td>0.2354**</td>
<td>0.0227</td>
<td>0.1914</td>
<td>0.2792</td>
<td>0.0000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Interior Spill-out</td>
<td>0.2259**</td>
<td>0.0214</td>
<td>0.1840</td>
<td>0.2672</td>
<td>0.0000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Border Direct</td>
<td>0.1330**</td>
<td>0.0180</td>
<td>0.0997</td>
<td>0.1691</td>
<td>-0.1586</td>
<td>0.0956</td>
<td>-0.3580</td>
<td>0.0286</td>
</tr>
<tr>
<td>Border Spill-in</td>
<td>0.4429**</td>
<td>0.0392</td>
<td>0.3679</td>
<td>0.5156</td>
<td>-0.3927**</td>
<td>0.1929</td>
<td>-0.7824</td>
<td>-0.0236</td>
</tr>
<tr>
<td>Border Spill-out</td>
<td>0.3652**</td>
<td>0.0494</td>
<td>0.2646</td>
<td>0.4563</td>
<td>0.5614**</td>
<td>0.0631</td>
<td>0.4317</td>
<td>0.6813</td>
</tr>
<tr>
<td>Home Own</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interior Direct</td>
<td>0.1145**</td>
<td>0.0105</td>
<td>0.0942</td>
<td>0.1355</td>
<td>0.0000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Interior Spill-in</td>
<td>-0.2034**</td>
<td>0.0204</td>
<td>-0.2448</td>
<td>-0.1627</td>
<td>0.0000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Interior Spill-out</td>
<td>-0.1896**</td>
<td>0.0195</td>
<td>-0.2297</td>
<td>-0.1517</td>
<td>0.0000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Border Direct</td>
<td>0.2167**</td>
<td>0.0186</td>
<td>0.1792</td>
<td>0.2535</td>
<td>0.1331</td>
<td>0.0922</td>
<td>-0.0454</td>
<td>0.3115</td>
</tr>
<tr>
<td>Border Spill-in</td>
<td>-0.3847**</td>
<td>0.0358</td>
<td>-0.3128</td>
<td>-0.4586</td>
<td>0.3565**</td>
<td>0.1756</td>
<td>0.0171</td>
<td>0.7130</td>
</tr>
<tr>
<td>Border Spill-out</td>
<td>-0.2647**</td>
<td>0.0446</td>
<td>-0.3503</td>
<td>-0.1827</td>
<td>-0.4404**</td>
<td>0.0579</td>
<td>-0.5547</td>
<td>-0.3303</td>
</tr>
</tbody>
</table>
Conditional Distributions: SDM-M

1. Set initial values for parameters.

2. Expand X to \tilde{X}.
 - $\tilde{X} = (\iota_G' \otimes X) \otimes (z \otimes \iota_K')$

3. $p(\tilde{B} | \Omega, \psi, z, \pi, x, y) \sim N(D_{\tilde{B}}d_{\tilde{B}}, D_{\tilde{B}})$
 - $D_{\tilde{B}} = (\tilde{X}' \Omega^{-1} \tilde{X} + V_{\tilde{B}})$
 - $d_{\tilde{B}} = \tilde{X}' \Omega^{-1} \tilde{y} + V_{\tilde{B}} \bar{B}_0$
 - $\tilde{y} = (I_N - \tilde{\Psi} W)y$

4. $p(\Omega | \bar{B}, \psi, z, \pi, z, y) \sim IG(c, C)$
 - $C = a + \frac{N}{2}$
 - $c = b + \frac{1}{2} e'e$
 - $e = \tilde{y} - \bar{X}\bar{B}$

- $p(\rho_g | \rho_{-g}, \Omega, \tilde{B}, z, \pi, x, y) \propto |I_N - \tilde{\Psi}| \exp \left[\frac{-1}{2} e' \Omega^{-1} e \right]$
- $p(z_i | \Omega, \tilde{B}, \psi, x, y) \sim MN(1, [\omega_{i1}, \omega_{i2}, \ldots, \omega_{iG}])$
 - $\omega_{ig} = \frac{q_{ig}}{\sum_{g=1}^{G} q_{ig}}$
 - $q_{ig} = (2\pi\sigma_g^2)^{-1/2} \exp \left[-\frac{1}{2\sigma_g^2} \left(y_i - \rho_g \sum_{j=1}^{N} w_{ij} y_j - x_i \beta_g - \phi_g \sum_{j=1}^{N} w_{ij} x_i \right)^2 \right]$
- $p(\pi | \Omega, \bar{B}, \psi, x, y, z) \sim D(\alpha + N)$