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Abstract

Conventional wisdom holds that results from input-output (IO)
models with greater sectoral detail are superior to those from mod-
els with less detail. However, there is an implicit assumption that
the more detailed data are as accurate as their aggregated counter-
parts. In this paper, we explore the tradeoffs between sectoral detail
and model accuracy in the context of IO regionalization, a practical
context in which greater sectoral detail is commonly achieved via the
imputation of missing values. This reality is especially apparent for
increasingly smaller geographical regions where privacy concerns result
in more suppressed and undisclosed data. As the number (or share) of
disaggregated values that require imputation increases, the disaggre-
gated model results will also deviate further from perfect accuracy. Is
there a point at which using an aggregate model with greater certainty
– relying on more reported and less imputed data – will provide results
that are superior to a disaggregated model with greater potential im-
putation error and uncertainty? To address these questions, we design
and implement simulation experiments founded on the concept of ag-
gregation bias that enable us to evaluate the likelihoods that aggregate
models would be superior to their disaggregated counterparts.
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1 Introduction
A generally accepted tenet in modeling system behaviors is that greater detail
in classifying groups of actors and agents results in greater within-group ho-
mogeneity and between-group differentiation, hence superior model results.
This is perhaps nowhere more true than in models of economic or indus-
trial systems, where similar establishments are grouped into industries for
analysis. Given a ceteris paribus choice between an economic model with a
400-industry classification scheme and another with only 70 industries, for
example, few analysts would choose the 70-sector model. Nor would many
analysts use a 20-sector model if a 70-sector model were available, and so on.

Economic input-output (IO) models provide a useful case in point, as a
good bit of attention has centered around inaccuracies due to aggregation.1
A great many of these studies appeared in the early IO literature and fo-
cused on sectoral aggregation, with a few extending the analysis to spatial
aggregation. Lahr and Stevens (2002) addressed role of regionalization in
the generation of aggregation error in regional input–output models, with
emphasis on whether, in the pursuit of an aggregated regional IO model, the
first step should be regionalization or aggregation.23

Missing from IO aggregation research, especially in the context of re-
gionalization methods, is the recognition that for most of the variables that
are used in regionalizing national IO accounts, increasing levels of sectoral
detail also increase reliance on databases with greater levels of suppressed,
undisclosed, masked, or imputed estimates. In practice, then, the operative
question extends beyond aggregation bias to a combination of bias and un-
certainty, or what we refer to here as reliability. Instead of asking a modeler
whether she would prefer a model with more industrial detail to one with
less, the question becomes one of whether a less detailed model based on
more observed and reported underlying data might be preferred to a more
detailed model based on less reliable data? Or more generally, would one

1See Lahr and Stevens (2002) for a thorough review of IO aggregation issues and the
interplay between aggregation and regionalization.

2In IO modeling, regionalization refers to adapting national IO accounts to the regional
level using of region-specific data.

3In the early days of IO modeling, the use of aggregated models was driven in part by
computational constraints that no longer apply, perhaps with the exception of IO models
used in computable general equilibrium (CGE) or hybrid econometric input-output models,
where solution complexity can rise rapidly with increasing numbers of industries.
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prefer a more reliable aggregated model to a less reliable but more detailed
model, and what is the nature of the tradeoff between the two? In this pa-
per, we confront these questions by an experimental design that enables an
empirical assessment of the tradeoffs, and further characterizes the potential
error that can arise from using less reliable detailed data.

2 Aggregation Bias in IO Models
In this section, we provide the foundation for the aggregation bias measure
that we use first in our simulations. The justification for focusing first on
Aggregation bias is that it is among the few analytical metrics that explicitly
relate aggregated and disaggregated IO accounts. Consider a Leontief input-
output model expressed as:

g = (I − A)−1f (1)

where aij = zij/g, zij ∈ Z is a matrix of interindustry flows, fj ∈ f is a
column vector of final demand values, and gj ∈ g is output from industry j.

The dimensions of equation (1) can be of order n or m, where n > m,
and S is an m X n aggregation matrix that defines the relationship between
n and m, such that Sg = g∗, and likewise, SZS ′

= Z∗, where the * denotes
the m-dimensional variables.4

Miller and Blair (2022) present Morimoto’s (1970) definition of total ag-
gregation bias as τ = g∗ − Sg. Here, g∗ is the result from the aggregated
model and Sg is the aggregated result from the disaggregated model. Ex-
panded, we have:

τ = (I − A∗)−1 f ∗ − S(I − A)−1f (2)

or

τ =
[
(I − A∗)−1 S − S(I − A)−1

]
f (3)

and in equivalent power series expansion,

4f∗ =

 1 0 0 0
0 1 1 0
0 0 0 1




f1
f2
f3
f4

 =

 f1
f2 + f3

f4

 from Miller and Blair (2022).
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τ =
[(
I + A∗ + A∗2 + . . .

)
S − S

(
I − A+ A2 + . . .

)]
f

τ =
[
(A∗S − SA) +

(
A∗2S − SA2

)
+ . . .

]
f

(4)

The first term in the series, (A∗S − SA)f , is defined as “first-order” ag-
gregation bias ((Theil, 1957)):

ψ = (A∗S − SA) f (5)

First-order aggregation bias disappears if A∗S = SA, and first-order bias
is zero when the nonzero elements in the final demand vector are not aggre-
gated, as would be the case in their example:

f =

f10
0

 (6)

and
f ∗ = Sf =

[
f1
0

]
(7)

An implicit assumption underlying the conventional wisdom is that all
underlying data at the different levels of aggregation and detail are known
and accurate. It is clear that under this assumption, more detailed models
will result in more accurate results and thus be preferred to more highly ag-
gregated models, especially in modern times when computational power is
no longer a binding constraint. In practice, however, this assumption does
not hold because published data with greater detail generally have increasing
numbers of undisclosed or imputed data (nondisclosure to protect privacy has
long been a common practice used by government reporting agencies). The
recent adoption of a newly developed deferentially private publication system
by the U.S. Bureau of the Census amplifies levels of uncertainty in underly-
ing detailed data (Abowd, 2018; Dwork, 2019). Whereas the application of
disclosure rules has generally been viewed as the explanation for undisclosed
and unreported data, even reported data can no longer be assumed to be
accurate. The problem becomes more severe as sectoral detail increases and
as region size (in terms of economic activity) decreases. Hence, the trade-off
between more accurate aggregated data on the one hand and more detailed
but less reliable data on the other is increasingly clear in the context of
input-output modeling. How might the conventional wisdom change after
explicitly recognizing this trade-off?
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Assume that we have access to all of the true, perfectly accurate detailed
data for the foundation of analysis and that the corresponding aggregate
data are derived from the detailed data. In this extreme case, we have 100%
reported and accurate detail-level and aggregated data. The aggregation
bias theorem results apply without qualification and the first-order bias in
the aggregated model results can be measured by ψ.

As we deviate from this perfect and complete information scenario, the
number (or share) of inaccurate detailed values due to differential privacy
and imputation increases and the disaggregated model results will deviate
further from perfect accuracy. Is there a point at which the accuracy of an
aggregate model with greater certainty will be preferred to a less reliable
disaggregated model with greater detail?

We explore this question using a simulation approach that randomly per-
turbs the values in the detailed vector of output by industry, g. To maintain
meaning and comparability, we require that our experimental simulation de-
sign must respect the constraint that the sum of the (perturbed) output
values in the detailed industries (the child industries) must equal the true
aggregate (parent sector) output, g∗j , or:∑

i∈j

gi = g∗j , ∀ i, j (8)

where industry i ∈ j indicates that detailed industry i belongs to aggregate
industry j. This constraint is met by applying proportional adjustments to
the randomly perturbed values at each simulation step.

3 Experimental design in the context of input-
output regionalization

Our primary interest in this paper is to explore these issues in the context
of building regional IO accounts by combining region-specific data with na-
tional IO accounts. This is the standard approach to regional IO because
IO accounts are rarely available for most sub-national regions. Employment
and or compensation data by industry are typically used to estimate output
by industry. Industry output data from the state of Illinois are then used
as regional versions of corresponding national accounts counterpart variables
and parameters that then approximate a region’s industrial structure. Illinois
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was selected for this initial analysis as a state with a sufficiently developed
and highly integrated inter-industrial system to support meaningful and rep-
resentative results. A large and integrated system is also less likely to be
based on imputed values in place of reported accounts regionalization data.

This down-scaling process also carries implications for final demands. In-
dustries that are concentrated within a given region, for example, will likely
have greater surplus output available for exporting, and output from indus-
tries that are relatively less regionally well-represented might need to import
relatively more than their national counterparts. Thus, while equation (5)
can be used to estimate the combined effect of aggregation under conditions
of disaggregated data uncertainty, we use equation (9), below, to capture
these effects along with the effect of corresponding changes to estimates of
final demand.

ψs = A∗Sf − SAsf s (9)

The final demand in the first RHS term of equation (9) is the true final
demand vector used in equation (6) but f s in the second RHS term is the final
demand vector derived during the regionalization procedure. The first RHS
term corresponds to the reference point for a perfectly aggregated regional
model that was regionalized using true regional data while the second RHS
term corresponds to the aggregated result from a model that was regionalized
using simulated output values that abide by the constraints of equation (8).
The difference between the two terms reflects bias due to a combination of
aggregation and final demand effects, which accurately reflects most practi-
cal input-output applications based on currently available – and unavailable
– published data.

3.1 Total Final Demand

The aggregation bias measure developed by Morimoto (1970) operates within
an industry-by-industry accounting framework. Because modern accounts
most commonly report final demand in commodity space, we need not only to
reformulate the aggregation bias measure using the elements of the commodity-
by-industry accounting frameworks, but we also need to formulate the ap-
propriate final demand totals in commodity space.

Following Jackson and Járosi (2022), we see that export demand and
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other final demand, which includes consumption, investment and inventory
adjustment, and government expenditures, enter the accounting identity for
open regional systems differently. We know that for open regional systems,
substantial portions of other final demand are expected to be satisfied by
imports. Hence, the conversion of other (commodity) final demand to indus-
try output differs from the conversion from export final demand to industry
output.

Let commodity demand for exports be f ex and other commodity demand
be fD, and the total final demand be f t = fD + f ex. Since our goal is a
vector of final demand for regional industry output, the total final demand
satisfied by regional industries after the transformation of commodity space
to industry space is:

f t = D(Q̂fD + f ex) (10)

or
f t = D̃fD +Df ex (11)

Where D = V q̂ −1 and D̃ = DQ̂. Q is a vector of proportions of own-
region commodity demand satisfied by regional industries, otherwise known
as regional supply proportions, calculated as Q = ((q− f̂ ex+m)−1)(q− f ex).
The effect of D is to reallocate commodities used by industries, to industries
production of these commodities, regardless of their origin. Thus, the pre-
multiplication of D by exports means all the commodities demanded for
exports that the region satisfied by its domestic industry production.

Following the central point of Jackson’s (1998) regionalization method,
the make table (V ) is standardized by total regional commodity supply rather
than domestic commodity production (q). The standardized make table D̃ =
V/s−1, where the total supply is equal to the commodity output plus imports
(s = q+m) can also be rewritten as D̃ = V q̂−1Q̂ (see (see Jackson and Járosi,
2022).

D̃ gives us not only the commodity demand supplied by domestic indus-
tries, but it also gives us the proportion of regional commodity supply that is
imported by subtracting each column sum of D̃ from 1.0. Thus, D̃ captures
the industry production of commodities from their domestic inputs (region)
or from the rest of the world (imports). The pre-multiplication of D̃ by the
fixed components of final demand has the effect of removing the final de-
mand imports since only the portion of regional final demand to be satisfied
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by the region’s own industries is the target. In other words, this identifies
the final demand that the region’s production can satisfy. Because of the
relationships among industry output estimates and final demands, the final
demand vector f t will change with each output simulation draw. Therefore,
to find the first-order aggregation bias we need:

ψ = (A∗S − SA)f t (12)

ψ = (D∗Q̂∗B∗SI − SIDQ̂B)D(Q̂fD + f ex) (13)

In computing ψ note that for any given region the first term (D∗Q̂∗B∗SI),
which is the aggregated technical coefficients matrix A∗ will remain constant
through subsequent simulations, and the regionalization method will yield
the ψ for the zeroth (no-change) iteration on all simulations, making this the
benchmark ψ. Because the data for the zeroth iteration is perfectly accurate
by assumption, the benchmark ψ vector will represent the true aggregation
bias values.

3.2 Simulation Design

The simulation framework is designed so as to perturb child industries in
a way that respects the adding up constraint of equation (8). Simulated
output vectors, gs, drive the regionalization process and subsequent outcome
assessment. Five of the 20 parents have only a single child industry, so these
parents and their children retain their true values throughout all simulation
draws. Parent sectors and industry aggregation schemes are shown in Table
1. All children’s industries are listed in the Appendix.

We implement two kinds of simulations: one parent sector at a time and
all parent sectors at once. For the case of one parent at a time, children of
only one parent are perturbed to generate one set of data supporting FAB and
multiplier analysis for each perturbed parent. We anticipate fewer substantial
results at in this first case but evaluating one parent at a time allows us to
identify any parent whose perturbations might dominate the sensitivity of
outcomes. The case of all parents at once is the most relevant case, as
reliability issues will not be limited to subsets of industries in practice. In
this case, the children of all parents with more than one child are perturbed,
supporting the empirical basis for a single FAB and multiplier analysis.
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Table 1: Parent Sectors

Children Parents Sector Name
1, 2 1 Agriculture, forestry, fishing, and hunting
3 - 5 2 Mining
6 3 Utilities
7 4 Construction
8, 17, 20 - 23 5 Wood leather, textile, and paper products
9 - 12 6 Mineral and Metal Products
13, 14, 18 7 Electronic and Electrical products
15, 16 8 Transportation products
24-26 9 Chemical products
19 10 Manufacturing
27 11 Wholesale trade
28 - 31 12 Retail trade
32 - 39 13 Transportation and warehousing
40-43 14 Information
44-49 15 Finance, insurance, real estate, rental, and leasing
50 - 55 16 Professional and business services
56 -60 17 Educational svcs, health care, and social assistance
60- 64 18 Arts, entertainment, accommodation, & food svcs
65 19 Other services, except government
66 - 67 20 Government

For every perturbed parent sector, we add random shocks to the true
child-industry output values. The size of each shock is benchmarked to the
magnitudes of corresponding true industry output values. Benchmarking
the shocks to true output values helps ensure against extreme changes to
the true distributions of industry output values for a given parent. Post-
shock child output values are then re-scaled to sum to parent sector totals.
Perturbed output vectors then drive a regionalization process, resulting in a
unique disaggregated regional model that supports the calculation of interest
variables for assessment. More formally, each simulation draw follows these
steps:

1. Simulate a trial regional output vector.

a. Add a random disturbance to every disaggregated output value,
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gi from ∼ N(0, gi
4
).

2. Impose the adding-up constraint.

3. Invoke the regionalization method to generate As and f s.

4. Compute and store ψs and industry multipliers.

4 Analytics
Our analysis falls into three kinds of approaches. Two of these are based on
probability and the third relies on descriptive statistics.

4.1 Statistical Measures

Our first approach is to apply a standard statistical method to determine
whether the average simulation value would be expected conditional on the
null (no difference in the FAB) being true. This is the traditional approach
to assessing the outcomes of our simulations and is achieved using standard
t-tests. With known true values and distribution of observed values, a sig-
nificant t-value will reject the null hypothesis H0 : ψ = S−1

∑S
i=1 ψ̂

s versus
an alternative H1 : ψ ̸= S−1

∑S
i=1 ψ̂

s.
The second approach compares the likelihoods of two specified competing

values: the true value and the modal simulated value. We use the pdf of the
simulation results to identify these likelihoods and then use them to assess
which is more likely and by how much. These odds ratios then complement
the traditional t-test by estimating how much more likely, conditional on
the simulated distribution of outcomes, that a specific value will be observed
than the null value. We would interpret an odds ratio of 3, for example, as
H1, the modal value of f(ψ̂), being three times more likely to be observed
than H0. More plainly, the odds of observing H0 as compared to H1 are 25%
(1 in 4) against, and the odds are 75% (3 in 4) in favor of H1.

Odds ratios also can be converted to approximate probabilities (p-values)
that indicate the statistical significance of the odds ratios. Odds ratios
are typically less statistically significant than corresponding t-tests because
where t-tests evaluate H0 vs. all other possible values, the odds ratios evalu-
ate H0 against a specific H1 value. The interpretation of a 2 to 1 odds ratio
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holds, however, irrespective of its p-value and thus provides information that
is not provided by the t-test.

To further clarify the odds ratio, consider the example in Figure 1. Sup-
pose by perturbing a parent sector’s child-industry output values we obtain
the FAB distribution identified as pdf A. We would like to know: what are
the odds against the null hypothesis of no bias, that is H0 : E(fab) = 0? Fol-
lowing Mills (2018) and Cornwall et al. (2019), we can calculate the height
of the distribution (F) in some ϵ window around C, the most likely value ob-
served by our simulations, and repeat the process (G) around our null value,
0. We can then form the posterior odds by simply taking the ratio, F/G,
which represents the "odds against the null hypothesis".5

Figure 1: Odds Ratio

5Shifting the distribution to the right or left to modify the hypothesized null value
would be functionally equivalent.
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4.2 Descriptive Measures

Neither the t-tests nor the odds ratios, however, measure the magnitudes of
the deviations of simulated outcomes from true values. The third dimension
of our analysis adds three more measures, namely the symmetric mean abso-
lute percentage error (SMAPE), the root mean squared error (RMSE), and
the root mean squared percentage error (RMSPE). The SMAPE identifies
the average deviation from the true value, giving equal weight to all obser-
vations. The RMSE is similar but adds weight to outliers, which is relevant
for guarding against observing extreme values, and the RMSPE presents the
RMSE relative to the size of the variable in question.

MAPE is widely used and consists of a relative measure that expresses
the absolute error between the actual value and the forecast value. It is
good for when the outcome variables depend upon the proportional size of
the errors relative to the true data, which is the point we are making here.
However, the disadvantage of using MAPE is that lacks statistical theory and
is influenced by outliers (Makridakis (1993)). In order to avoid the latter, we
corrected the formula, using what is called the symmetric MAPE:

SMAPE =
100

n

∑ |ψs − ψt|
(|ψt + ψs|)/2

(14)

where ψt is the "true" FAB, ψs is the FAB resulted from the simulations
design and n is the number of simulation trials.

The formula for multiplier analysis follows the same form:

SMAPE =
100

n

∑ |M s −M t|
(|M t +M s|)/2

(15)

where M denotes multiplier variables.
The root mean square error measure is shown below.

RMSE = 100(

√
1

n

∑N

n=1
µ2) (16)

where µ is the percentage difference between simulated and benchmark values
for the variables of interest.

SMAPE and RMSPE were calculated as percentages of the multiplier
value less 1 rather than as a percentage of the standard multiplier value. The
adjustment to the denominator reflects the recognition that 1.0 is an invariant
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multiplier floor in this context, while the multiplier effects are captured in
the remainder. I.e., a multiplier of 1.0 indicates no multiplier effect.

4.3 Results

In this section, we apply these analytics to FAB and output multipliers. The
FAB metric is a vector whose elements indicate the bias in each respective
parent sector. We evaluate each FAB element independently to provide in-
sight into the implications of data unreliability on bias for each parent sector.
Output multipliers are Leontief inverse column sums derived from interindus-
try coefficient matrices on each simulation draw. We focus on all parents at
once results given that they are the most relevant case. One parent at a time
results are discussed in the sensitivity analysis.

4.3.1 FAB

The FAB analytics for FAB for the case of perturbing all parents at once are
revealing. Table 2 presents the salient statistics. The benchmark FAB values
per parent are presented in column 2 for reference. P-values for the t-statistics
in column 3 were all significant at p < 0.01, so the column was omitted. None
of the odds ratios exceed 1.5, and none of them were shown to be statistically
significant. Note, however, that an odds ratio of 1.5 would correspond to
the odds of H1 being observed 3 times for every two observations of the
benchmark FAB.

The SMAPE values range from a low of around 2% to a high of 169%.
There is an inverse relationship between SMAPE and the absolute value
of FAB, with a correlation of -0.38; smaller FAB values are subject to a
larger percentage error. The RMPSE is shown in column 7. As expected
from its heavier weighting of extreme values, and with the exception of one
parent sector (FIRE), RMSPE values consistently exceed their corresponding
SMAPE values. In the case of parent 2 (Mining) – which has a very small
FAB – the RMSPE is more than an order of magnitude larger than SMAPE.

Together, these statistics support the existence of a trade-off between
greater model detail and model accuracy. The t-statistics reject the null hy-
pothesis H0 = Benchmark FAB conditional on the associated density func-
tion. The odds ratios suggest that in nearly all cases, there is a greater
likelihood of observing the most frequently observed simulated value than
the true FAB, though the odds ratios are not generally large and none are
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statistically significant. Of greater concern might be the scale of bias poten-
tially introduced by unreliable data. The average SMAPE over all parents
exceeds 60%, and the average RMSPE is nearly three times as large. Hence,
there is a clear risk that greater detail can introduce substantial changes to
model outcomes.

Given these results, a closer evaluation of results at the disaggregated level
is clearly warranted. The next section presents the results of the multiplier
analysis.

Parent Fab t Odds SMAPE RMSE RMSPE
1 -68.9 -29.0 1.03 42% 48.7 71%
2 -2.6 -88.7 1.30 169% 46.0 1775%
3 372.9 -49.2 1.03 94% 422.5 113%
4 -118.3 -20.5 1.00 136% 507.0 429%
5 -804.9 4.5 1.06 21% 207.1 26%
6 -379.4 32.2 1.00 115% 731.1 193%
7 -708.2 95.4 1.08 25% 193.6 27%
8 -394.0 -25.7 1.04 17% 86.0 22%
9 -1376.7 101.0 1.01 69% 1125.5 82%
10 -421.6 -22.1 1.00 30% 159.2 38%
11 -209.0 -140.6 1.49 78% 357.2 171%
12 337.0 64.9 1.12 57% 314.4 93%
13 2470.0 47.6 1.01 26% 893.0 36%
14 -696.0 -2.8 1.01 64% 557.1 80%
15 -4003.3 145.9 1.47 95% 3674.3 92%
16 -32888.0 76.9 1.03 9% 3486.8 11%
17 13543.9 59.9 1.00 2% 323.1 2%
18 375.7 35.5 1.00 87% 516.3 137%
19 -249.5 -65.3 1.06 58% 217.8 87%
20 -906.0 -48.5 1.05 15% 186.3 21%

Table 2: FAB Analytics

4.3.2 Multipliers

Perturbing all eligible parent sectors at once – those that have multiple chil-
dren – reflects the more likely scenario where data unreliability is not re-
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stricted to small subsets of industries. These simulations provide the foun-
dation for evaluating the impacts of detailed data unreliability on detailed
outcomes, namely impacts on output multipliers.

As was the case with one parent at a time, t-statistics were almost uni-
formly statistically significant. The average odds ratio over all industries
was 2.85, indicating that observing the H1 value was 65% more likely than
observing the true multiplier. Forty-two of the 67 multiplier odds ratios were
greater than 2 to 1, and the odds ratios for 21 industry output multipli-
ers were greater than 3 to 1. Twelve multiplier odds ratios exceeded 4 to
1. Twenty-nine of 67 odds ratios were statistically significant at p < 0.10,
with 12 significant at p < 0.05. All SMAPE values exceeded 2.35%, 22 were
between 4.0% and 5.0%, and 42 were greater than 5%. RMSPE showed
a maximum value of 13.78%, and for all but eight industries, the RMPSE
exceeded 5%. The average RMSPE value is 6.39%.

Table 3 shows the salient output multiplier statistics when all parents
are perturbed at once, for the industries with the top 20 RMSPE, in sort
order. T-statistics and their p-values, virtually all of which were signifi-
cant, have been omitted for clarity. To summarize the multiplier results,
the t-statistics virtually all reject the null hypothesis that the true multiplier
would be observed conditional on the corresponding distribution of simulated
values. Likewise, the odds ratios suggest that for 42 industries, the specific
alternative value was at least 50% more likely to be observed than the true
benchmark multiplier. SMAPE values indicate that that nearly 60% of the
multipliers are subject to greater than 5% error, and that number grows to
88% when extreme outliers are weighted more heavily by RMSPE.

4.3.3 Sensitivity Analysis

Perturbing each parent’s child industry values one parent at a time provides
the foundation for assessing whether any unreliability attributed to any one
parent dominates impacts on model outcomes at the detailed level of analysis
via assessing the FAB results and the detailed output multipliers. In the
FAB results, virtually all of the 300 t-statistics generated (15 multiple-child
parents X 20 FAB elements) were statistically significant. Only sixteen of
the 300 odds ratios had values exceeding 2.0, but eleven of those odds ratios
exceeded 100. FABs for parents 4, 10, 15, and 19 were among the most
susceptible to large FAB impacts in these simulations.

Perturbing each parent’s industry children one parent at a time generates
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Industry Multiplier Odds p-value SMAPE RMSE RMSPE
47 2.275 1.69 0.10 10.97% 0.176 13.78%
61 1.398 1.33 0.20 7.18% 0.034 8.67%
45 1.652 4.77 0.04 7.76% 0.056 8.52%
41 1.516 1.47 0.43 7.01% 0.043 8.25%
30 1.496 1.56 0.20 6.91% 0.041 8.21%
10 1.705 1.06 0.77 6.87% 0.058 8.18%
44 1.413 5.59 0.04 7.39% 0.033 8.03%
34 1.846 2.71 0.10 6.90% 0.068 8.01%
36 1.635 4.89 0.04 7.02% 0.050 7.84%
13 1.210 1.11 0.38 6.14% 0.016 7.69%
39 1.623 1.77 0.11 6.20% 0.047 7.55%
11 1.646 1.13 0.66 6.30% 0.049 7.52%
32 1.422 2.66 0.16 6.56% 0.031 7.40%
50 1.332 2.47 0.10 6.32% 0.024 7.36%
56 1.365 1.68 0.16 5.66% 0.026 7.16%
53 1.481 4.03 0.05 6.38% 0.034 7.14%
31 1.558 2.37 0.11 6.00% 0.039 7.06%
49 1.419 5.03 0.04 6.30% 0.029 6.95%
33 1.520 7.46 0.03 6.34% 0.036 6.91%

Table 3: Multiplier Analytics.

a very large number of outcomes for output multipliers, but was motivated
by the same rationale as that for FAB analytics summarized above. Nearly
all generated t-statistics were highly significant for the multiples, with odds
ratio values nearly all between 1.0 and 2.0. Therefore, the case of one parent
at a time confirms the patterns of the results found in the all parents at once
simulation design, meaning that the results are robust and are not sensitive
to different ways of perturbing the regional output.
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5 Considerations and Conclusion
This paper began by recognizing that the conventional wisdom regarding the
advantages of models with greater detail might be offset by poorer reliability
of detailed model data and that in the context of input-output modeling, es-
pecially at the regional level, greater detail in published data is almost always
less reliable than data published at higher levels of aggregation. This is easily
confirmed by an examination of virtually any economic data series published
at varying levels of industrial classification and geographical extents, and it
is quite clearly evident in published regional employment, wages, and output
data series.

In light of this recognition, our objective was to begin to identify the
nature of the trade-offs between model detail and model accuracy by focusing
on the use of data in the context of generating regional IO accounts. The
preference for detailed regional IO models over those with less sectoral detail
has long been implicit in the literature, but the question of the effect of
increased unreliability has never been explicitly assessed. Our research set
out to fill this void in the literature.

We designed a simulation framework that could be used to evaluate the
impacts on unreliable detailed data used in generating regional IO models
derived from national accounts. We focused first on aggregation bias because
it is among the few well-known metrics that explicitly include both aggregate
and disaggregated versions of the same IO model. First-order aggregation
bias (FAB) thus provided a convenient mechanism for the initial evaluation
of the extent of the detail-reliability tradeoff. From a traditional statistical
standpoint, the dominance of statistically significant t-statistics indicated
that a more detailed assessment was warranted, which led to a more restricted
approach using odds ratios to quantify the relative likelihood of observing
the true values vs. the modal value from the simulated distributions of
corresponding values. Odds ratios confirmed for some parent sectors, the
odds of observing the true values conditional on the simulated distributions
were quite low.

While FAB provides a mechanism for assessing the relationship between
aggregated data and disaggregated data, we are also interested in the impli-
cations of using unreliable data at the detailed level, in terms of the potential
error in detailed model outcomes. To assess these relationships, we added an
analysis of detailed industry multipliers. To this end, using the same sim-
ulation framework, we derived distributions of detailed industry multipliers
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and assessed them using t-tests and odds ratios, finding again that nearly all
t-statistics were highly significant and many odds ratios were large enough
to be statistically significant.

Combined, these analyses indicate a strong potential for statistically sig-
nificant differences between model outcomes based on perfectly accurate and
less reliable data. However, the identified statistical differences alone do not
reveal the magnitude of potential errors that might arise. Hence, we added
descriptive measures to quantify the sensitivity of the model to unreliable
detailed data. The results for FAB revealed the potential for an average of
60% error in individual elements of the FAB vector, and for a more intuitive
and practical assessment, revealed that differences in excess of 5% might be
expected for the majority of industry multipliers.

Our findings are tempered by several considerations. First, these results
are based on empirical findings for a single region, and while selected for
having a representative industrial structure, there might be peculiarities spe-
cific to our test region that influence the outcomes. Second, our analysis
is conducted at a level of aggregation that is already somewhat high. In
a practical setting, U.S. IO analysts more commonly decide between using
the 71-industry classification of published annual IO accounts and the 405-
industry classification of the quinquennial accounts. Future research will
leave regionalization aside and focus solely on comparisons between these
two levels of aggregation. And third, the results presented here are a func-
tion of the definition of random shocks that we used to simulate inherent
data uncertainty. Sensitivity analyses using alternative definitions in future
research will reveal much about whether the identified risks of trading model
accuracy for greater industrial detail are justified.
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A Appendix

Industry Industry Name
1 Farms
2 Forestry, fishing, and related activities
3 Oil and gas extraction
4 Mining, except oil and gas
5 Support activities for mining
6 Utilities
7 Construction
8 Wood products
9 Nonmetallic mineral products
10 Primary metals
11 Fabricated metal products
12 Machinery
13 Computer and electronic products
14 Electrical equipment, appliances, and components
15 Motor vehicles, bodies and trailers, and parts
16 Other transportation equipment
17 Furniture and related products
18 Miscellaneous manufacturing
19 Food and beverage and tobacco products
20 Textile mills and textile product mills
21 Apparel and leather and allied products
22 Paper products
23 Printing and related support activities
24 Petroleum and coal products
25 Chemical products
26 Plastics and rubber products
27 Wholesale trade
28 Motor vehicle and parts dealers
29 Food and beverage stores
30 General merchandise stores
31 Other retail
32 Air transportation
33 Rail transportation
34 Water transportation
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35 Truck transportation
36 Transit and ground passenger transportation
37 Pipeline transportation
38 Other transportation and support activities
39 Warehousing and storage
40 Publishing industries, except internet (includes software)
41 Motion picture and sound recording industries
42 Broadcasting and telecommunications
43 Data processing, internet publishing, and other information services
44 Federal Reserve banks, credit intermediation, and related activities
45 Securities, commodity contracts, and investments
46 Insurance carriers and related activities
47 Funds, trusts, and other financial vehicles
48 Real estate
49 Rental and leasing services and lessors of intangible assets
50 Legal services
51 Computer systems design and related services
52 Miscellaneous professional, scientific, and technical services
53 Management of companies and enterprises
54 Administrative and support services
55 Waste management and remediation services
56 Educational services
57 Ambulatory health care services
58 Hospitals
59 Nursing and residential care facilities
60 Social assistance
61 Performing arts, spectator sports, museums, and related activities
62 Amusements, gambling, and recreation industries
63 Accommodation
64 Food services and drinking places
65 Other services, except government
66 Federal government defense
67 Total government nondefense

Table 4: Industries Names.
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